Chromosomal Localization of Genes Conferring Desirable Agronomic Traits from Wheat-Agropyron cristatum Disomic Addition Line 5113
نویسندگان
چکیده
Creation of wheat-alien disomic addition lines and localization of desirable genes on alien chromosomes are important for utilization of these genes in genetic improvement of common wheat. In this study, wheat-Agropyron cristatum derivative line 5113 was characterized by genomic in situ hybridization (GISH) and specific-locus amplified fragment sequencing (SLAF-seq), and was demonstrated to be a novel wheat-A. cristatum disomic 6P addition line. Compared with its parent Fukuhokomugi (Fukuho), 5113 displayed multiple elite agronomic traits, including higher uppermost internode/plant height ratio, larger flag leaf, longer spike length, elevated grain number per spike and spikelet number per spike, more kernel number in the middle spikelet, more fertile tiller number per plant, and enhanced resistance to powdery mildew and leaf rust. Genes conferring these elite traits were localized on the A. cristatum 6P chromosome by using SLAF-seq markers and biparental populations (F1, BC1F1 and BC1F2 populations) produced from the crosses between Fukuho and 5113. Taken together, chromosomal localization of these desirable genes will facilitate transferring of high-yield and high-resistance genes from A. cristatum into common wheat, and serve as the foundation for the utilization of 5113 in wheat breeding.
منابع مشابه
Chromosomal localization of genes conferring desirable agronomic traits from Agropyron cristatum chromosome 1P
Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable genes for wheat breeding. To transfer these genes into wheat, a series of wheat-A. cristatum derivatives have been obtained in our laboratory. In this study, a wheat-A. cristatum derivative II-3-1 was obtained, which was proven to contain a 1P (1A) disomic substitution and...
متن کاملTransferring Desirable Genes from Agropyron cristatum 7P Chromosome into Common Wheat
Wheat-Agropyron cristatum 7P disomic addition line Ⅱ-5-1, derived from the distant hybridization between A. cristatum (2n = 4x = 28, PPPP) and the common wheat cv. Fukuhokomugi (Fukuho), displays numerous desirable agronomic traits, including enhanced thousand-grain weight, smaller flag leaf, and enhanced tolerance to drought. In order to transfer these traits into common wheat, Ⅱ-5-1 was induc...
متن کاملGenetic Rearrangements of Six Wheat–Agropyron cristatum 6P Addition Lines Revealed by Molecular Markers
Agropyron cristatum (L.) Gaertn. (2n = 4x = 28, PPPP) not only is cultivated as pasture fodder but also could provide many desirable genes for wheat improvement. It is critical to obtain common wheat-A. cristatum alien disomic addition lines to locate the desired genes on the P genome chromosomes. Comparative analysis of the homoeologous relationships between the P genome chromosome and wheat g...
متن کاملPhysical Localization of a Locus from Agropyron cristatum Conferring Resistance to Stripe Rust in Common Wheat
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat (Triticum aestivum L.) worldwide. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), one of the wild relatives of wheat, exhibits resistance to stripe rust. In this study, wheat-A. cristatum 6P disomic addition line 4844-12 also exhibited resistance to stripe rust. To identify the s...
متن کاملEfficient Induction of Wheat-Agropyron cristatum 6P Translocation Lines and GISH Detection
The narrow genetic background restricts wheat yield and quality improvement. The wild relatives of wheat are the huge gene pools for wheat improvement and can broaden its genetic basis. Production of wheat-alien translocation lines can transfer alien genes to wheat. So it is important to develop an efficient method to induce wheat-alien chromosome translocation. Agropyroncristatum (P genome) ca...
متن کامل